
1/22

EdDSA Fault attacks Practical results

Practical fault attack against the
Ed25519 and EdDSA signature

schemes

Yolan Romailler ∧ Sylvain Pelissier
Kudelski Security

September 25, 2017

2/22

EdDSA Fault attacks Practical results

CONTENT

EdDSA
Signing using elliptic curves
The EdDSA alternative

Fault attacks
Previous work
A fault attack against EdDSA
Possible countermeasures
Our countermeasure

Practical results
Platform and library
The device
Actual results

3/22

EdDSA Fault attacks Practical results

WHO ARE WE?
RESEARCHERS

We work at Kudelski
Security, do research,
crypto code reviews,
device attacks, IoT
security, and more.

We can play with a
focused ions beam,
laser FI, voltage glitch
bench, side-channel
bench, chemical
decapsulation, ...

Our Lab

4/22

EdDSA Fault attacks Practical results

ELLIPTIC CURVE SIGNATURE SCHEMES
ECDSA

Well known EC signature scheme: ECDSA, over a curve
with generator B of order `, using a private key a and a
hash function H to sign a message M:

I Generate randomly k ∈ [1, `− 1]
I (x, y) = k · B
I R = x mod `

I S = k−1(H(M) + ra) mod `

I Output (R,S)

5/22

EdDSA Fault attacks Practical results

ELLIPTIC CURVE SIGNATURE SCHEMES
ECDSA

ECDSA can be dangerous to use because its security relies
heavily on cryptographically strong randomness.

ECDSA has proved to be sensitive to many kinds of fault
attacks, side channels and other fun things.

A deterministic version of ECDSA has been published in
RFC 6979, getting rid of the randomness by hashing the
message.

6/22

EdDSA Fault attacks Practical results

ELLIPTIC CURVE SIGNATURE SCHEMES
THE EdDSA SCHEME

EdDSA is a public-key elliptic curve signature scheme
recently standardized in RFC 8032, based on Schnorr’s
signature.

Its security is based on the ECDLP.

EdDSA works over (twisted) Edwards curves.

Let’s say we have such a curve E, with base point
B 6= (0, 1) of order `.

7/22

EdDSA Fault attacks Practical results

THE EdDSA SCHEME
IT’S PRETTY GOOD

Some of EdDSA notable features:

I Provides high performances

I “Complete” formulas, i.e. no special case

I No randomness required to sign

I Made with side-channel attacks resilience in mind

I Small public keys (32 bytes for Ed25519)

I Small signatures (64 bytes for Ed25519)

8/22

EdDSA Fault attacks Practical results

THE EdDSA SCHEME

EdDSA uses:
I a curve E, with base point B 6= (0, 1) of order `

I a hash function H that produces a 2b-bits output
(e.g. SHA-512 for b = 256 bits)

I a private key k that is b-bit long, which get hashed
into H(k) = (k0, . . . , k2b−1)

I an integer a determined from (k0, k1, . . . , kb−1)
(i.e. the first half of the private key)

I a public key A computed from the base point B,
such that A = a · B

9/22

EdDSA Fault attacks Practical results

THE EdDSA SCHEME
SIGNING

Algorithm 1 EdDSA Signature

Require: M, (k0, k1, . . . , k2b−1), B and A
1: a← 2b−2 +

∑
3≤i≤b−3 2iki

2: r← H(kb, . . . , k2b−1,M) mod `
3: R← r · B
4: h← H(R,A,M)
5: S← (r + ah) mod `
6: return (R,S)

10/22

EdDSA Fault attacks Practical results

THE EdDSA SCHEME
VERIFYING

Amongst its differences with ECDSA, the signature
computation is fully deterministic!

A signature is considered valid if R ∈ E, S ∈ {0, . . . , `− 1}
and the following equation holds in E:

S · B = R + H(R,A,M) · A

11/22

EdDSA Fault attacks Practical results

PREVIOUS WORK: ECDSA
IT LEAKS THE KEY

Playstation 3 attack: two different messages M1 and M2

are signed with the same nonce k and produces signatures
S1 and S2, resp., then:

k = (H(M1)−H(M2))(S1 − S2)
−1

a = (sk−H(M1))r−1

Deterministic version also proved to be weak against
fault attacks.

12/22

EdDSA Fault attacks Practical results

OUR FAULT MODEL
LET’S KEEP IT REALISTIC

If you have the device in your hands, you can fault there:

Require: M, (k0, k1, . . . , k2b−1), B and A
1: a← 2b−2 +

∑
3≤i≤b−3 2iki

2: r← H(kb, . . . , k2b−1,M) mod `
3: R← r · B
4: h← H(R,A,M)
5: S← (r + ah) mod `
6: return (R,S)

R is left untouched, S is corrupted to a value S′.

We assume a single random byte fault.

13/22

EdDSA Fault attacks Practical results

THE ATTACK AGAINST EdDSA
LEAKS HALF OF THE KEY

The value of a can be then recovered with

a = (S− S′)(h− h′)−1 mod `

But the second half of the private key is still unknown!

Even if a is known, it remains impossible to compute
r = H(kb, ..., k2b−1,M) for a new message M since the
values kb, ..., k2b−1 are not known.

So EdDSA was well thought and is resistant to such
faults, right?

14/22

EdDSA Fault attacks Practical results

HALF A KEY?
LET’S RANDOMIZE THE REST, IT’S A SECRET!

In fact you can fake signature!

By selecting r as a random number, and computing (R,S)
accordingly for any message M we would have upon
verification that:

S · B = (r + H(R,A,M)a) · B = R + H(R,A,M)a · B

= R + H(R,A,M) · A

The verifier cannot detect this!

15/22

EdDSA Fault attacks Practical results

THE STANDARD COUNTERMEASURES
FOR SUCH THINGS

I ID, n-plication

I Redundancy

I Post-validation, but validation is costly

I Randomness in the generation of
r = H(kb, ..., k2b−1,M) , makes it non-compliant with
the RFC

16/22

EdDSA Fault attacks Practical results

ANOTHER WAY AROUND SINGLE FAULTS
IT LEAKS NOTHING

We propose to use a so-called “infective countermeasure”:

1. Compute h1 = H(R,A,M) with an implementation.

2. Compute h2 = H(R,A,M) with another
implementation.

3. Compute

S = (r + h1 + (a− ni)h1 + (ni − 1)h2) mod `

with ni a random b-bit number, changed at each
signature computation.

17/22

EdDSA Fault attacks Practical results

PLATFORM AND LIBRARY
WE NEEDED SOMETHING TO PLAY WITH

Arduino Nano board:
I ATmega328, 8-bit AVR architecture
I 16 MHz Clock speed
I Easy to program thanks to Arduino project

Fortunately, EdDSA was already implemented in
Arduino Libs.

Our code is open source, if you want to play.
https://github.com/kudelskisecurity/
EdDSA-fault-attack

https://github.com/kudelskisecurity/EdDSA-fault-attack
https://github.com/kudelskisecurity/EdDSA-fault-attack

18/22

EdDSA Fault attacks Practical results

THE DEVICE
IT’S SMALL, AND IT’S SLOW

19/22

EdDSA Fault attacks Practical results

IN PRACTICE
LET’S BRUTEFORCE THE ERROR’S OFFSET

We fault h = H(R,A,M) when signing M = 74657374:

R = b18b67af0d1bcc4786322748d682c6eef1590f
ee77e3ba1eccaf71856ce481f3

S = 95635ccb2af746eba982d8d8674d12468db804
dc8403ea5ddafe3a32dc0f6105

S’ = 2d210d14c162d508379562b745004f23b5b163
13b1bab7b5408c0d586358f200

We need to bruteforce the offset of the error, to recover
the faulted h′ value.
(Assuming a single byte fault occurred!)

20/22

EdDSA Fault attacks Practical results

Require: M, A, (R,S) and (R,S′)
1: h← H(R,A,M)
2: i← 0
3: for i < 32 do
4: e← 1
5: for e < 256 do
6: h′ ← 28ie⊕ h
7: a← (S− S′)(h− h′)−1 mod `
8: if a · B == A then
9: return a

10: end if
11: e← e + 1
12: end for
13: i← i + 1
14: end for
15: return ERROR

21/22

EdDSA Fault attacks Practical results

ACTUAL RESULTS
WE GOT HALF OF THE KEY, AND WE USE IT

So we recover the first half of the secret key, once we’ve
found the correct h′: a = (S− S′)(h− h′)−1 mod `
a = 110ce4cd00b3bc0c677cd52ac368710a8519e8

3a17dc00a0e21c6b43aee142f

And we can actually use it for signing:

def signwitha(m, pk, a):
r = random.randint(1, 2**256)
R = scalarmult(B,r)
S = (r+Hint(encodepoint(R)+pk+m)*a) % `
return encodepoint(R) + encodeint(S)

22/22

EdDSA Fault attacks Practical results

CONCLUSION
HERE WE ARE

I EdDSA is a really nice EC signature algorithm

I But it might not be a good fit on embedded devices

I Simple faults allow partial private key recovery

I Which allows to produce valid signatures!

I Ironically, its determinism is what doomed it

I Open question: what is the best way to counter it?

	EdDSA
	Signing using elliptic curves
	The EdDSA alternative

	Fault attacks
	Previous work
	A fault attack against EdDSA
	Possible countermeasures
	Our countermeasure

	Practical results
	Platform and library
	The device
	Actual results

